STATISTICS (C) UNIT 1

TEST PAPER 9

1. Briefly describe what is meant by

(i) a statistical model, [2]

(ii) a refinement of a model. [2]

2. Every week a social club holds a raffle in which each ticket has a probability of 0.05 that it will win a prize. Marjory decides to buy one ticket every week until she wins a prize, after which she will stop taking part. Find the probability that

(i) she wins a prize in the third week, [3]

(ii) she is still taking part in the fifth week. [2]

3. The random variable X has the binomial distribution B(n, p).

Given that $E(X) = k \operatorname{Var}(X)$, find an expression for p in terms of k. [3]

If n = 8 and k = 4, find

(i) P(X=5), (ii) P(X>6). [5]

4. The length of time, in minutes, that visitors queued for a tourist attraction is given by the following table, where, for example, '20 - ' means from 20 up to but not including 30 minutes.

Queuing time (mins)	0 -	10 -	15 -	20 -	30 -	40 - 60
Number of visitors	15	24	х	13	10	у

A histogram is drawn to represent this data. The total area under the histogram is 36 cm². The '10 - ' bar has width 1 cm and height 9.6 cm. The '15 - ' bar is ten times as high as the '40 - 60' bar.

(i) Find the values of x and y. [6]

(ii) On graph paper, construct the histogram accurately. [4]

5. The discrete random variable X takes only the values 4, 5, 6, 7, 8 and 9. The probabilities of these values are given in the table:

х	4	5	6	7	. 8	9
P(X=x)	p	0.1	q	q	0-3	0.2

It is known that E(X) = 6.7. Find

(i) the values of p and q, [6]

(ii) P(X < 7), [2]

(iii) Var(X). [3]

STATISTICS 1 (C) TEST PAPER 9 Page 2

6. Among the families with two children in a large city, the probability that the elder child is a boy is $\frac{5}{12}$ and the probability that the younger child is a boy is $\frac{9}{16}$. The probability that the younger child is a girl, given that the elder child is a girl, is $\frac{1}{4}$.

One of the families is chosen at random. Using a tree diagram, or otherwise,

(i) show that the probability that both children are boys is
$$\frac{1}{8}$$
. [4]

If three of the families are chosen at random,

7. The marks out of 75 obtained by a group of ten students in their first and second Statistics modules were as follows:

Student	A	В	С	D	E	F	G	Н	I	J
Module 1 (x)	54	33	42	71	60	27	39	46	59	64
Module 2 (y)	50	22	4 4	58	42	19	35	46	55	60

(i) Find
$$\sum x$$
 and $\sum y$. [2]

Given that $\sum x^2 = 26353$ and $\sum xy = 22991$,

(ii) obtain the equation of the regression line of
$$y$$
 on x . [3]

(iii) Estimate the Module 2 result of a student whose mark in Module 1 was (a) 65, (b) 5.Explain why one of these estimates is less reliable than the other.[3]

The equation of the regression line of x on y is x = 0.921y + 9.81.

(iv) Deduce the product moment correlation coefficient between x and y, and briefly interpret its value. [3]

STATISTICS 1 (C) TEST PAPER 9: ANSWERS AND MARK SCHEME

- (i) A mathematical representation which uses probabilities to describe and predict the behaviour of a real-life situation
 - (ii) An improved mathematical formulation of the problem which aims

to represent the reality more closely.

- 2. (i) P(wins in third week) = $0.95 \times 0.95 \times 0.05 = 0.045$ M1 A1 A1
 - (ii) $0.95^4 = 0.815$ M1 A1

B₂

4

- 3. np = knp(1-p) k(1-p) = 1 $p = 1 \frac{1}{k}$ M1 A1 A1
 - (i) p = 0.75 $P(X \le 5) P(X \le 4) = 0.3215 0.1138 = 0.208$ B1 M1 A1
 - (ii) $P(X > 6) = 1 P(X \le 6) = 1 0.6329 = 0.367$ M1 A1
- 4. (i) 10 15 has area 9.6 cm², so 2.5 visitors: 1 cm² B1 M1

and $36 \text{ cm}^2 = 90 \text{ visitors}$ 62 + x + y = 90 x + y = 28 M1 A1

Also $\frac{x}{2.5} - 10 \times \frac{y}{10}$ so x = 2.5y Hence x = 20, y = 8 M1 A1

- (ii) Freq. densities 1.5, 4.8, 4, 1.3, 1, 0.4 Histogram drawn B1 B3
- 5. (i) 4p + 13q + 4.7 = 6.7 4p + 13q = 2 M1 A1 p + 2q + 0.6 = 1 p + 2q = 0.4 B1

Solve: p = 0.24, q = 0.08 M1 A1 A1

- (ii) P(X < 7) = p + q + 0.1 = 0.42 M1 A1
- (iii) $E(X^2) = 48.54$ $Var(X) = 48.54 6.7^2 = 3.65$ M1 A1 A1
- 6. (i) Let P(younger child is a boy, given elder is a boy) = p

$$\frac{5}{12}p + \frac{7}{12} \times \frac{3}{4} = \frac{9}{16} \qquad \frac{5}{12}p = \frac{1}{8} \qquad p = \frac{3}{10} \qquad \text{M1 A1}$$

$$P(B, B) = \frac{5}{12} \times \frac{3}{10} = \frac{1}{8} \qquad \text{M1 A1}$$

- (ii) P(B, G or G, B) = $\frac{5}{12} \times \frac{7}{10} + \frac{7}{12} \times \frac{3}{4} = \frac{35}{48}$ or 0.729 M1 A1 A1
- (iii) $\frac{1}{8} \times \frac{1}{8} \times \frac{7}{8} \times 3 = \frac{21}{512}$ or 0.0410 M1 A1 A1
- (iv) Assumed independence B1 11
- 7. (i) $\sum x = 495$, $\sum y = 431$ B1 B1
 - (ii) $S_{xx} = 1850.5$, $S_{xy} = 1656.5$ y 43.1 = 0.895(x 49.5) M1 A1

y = 0.895x - 1.21 A1

- (iii) (a) 57, (b) 3 B1 B1
 - (b) is less reliable as it is well outside the range of given values B1
- (iv) $r = \sqrt{(0.895 \times 0.921)} = 0.908$ Quite good positive correlation M1 A1 B1